ML-based sequential analysis to assist selection between VMP and RD for newly diagnosed multiple myeloma

May 20, 2023

Abstract

Optimal first-line treatment that enables deeper and longer remission is crucially important for newly diagnosed multiple myeloma (NDMM). In this study, we developed the machine learning (ML) models predicting overall survival (OS) or response of the transplant-ineligible NDMM patients when treated by one of the two regimens—bortezomib plus melphalan plus prednisone (VMP) or lenalidomide plus dexamethasone (RD). Demographic and clinical characteristics obtained during diagnosis were used to train the ML models, which enabled treatment-specific risk stratification. Survival was superior when the patients were treated with the regimen to which they were low risk. The largest difference in OS was observed in the VMP-low risk & RD-high risk group, who recorded a hazard ratio of 0.15 (95% CI: 0.04–0.55) when treated with VMP vs. RD regimen. Retrospective analysis showed that the use of the ML models might have helped to improve the survival and/or response of up to 202 (39%) patients among the entire cohort (N = 514). In this manner, we believe that the ML models trained on clinical data available at diagnosis can assist the individualized selection of optimal first-line treatment for transplant-ineligible NDMM patients.

Read the full article here: https://www.nature.com/articles/s41698-023-00385-w

Scientific Publications

Identification of novel genetic mutations for the treatment prognostication of canine lymphoma

npj Precision Oncology
Learn More →

A study on the relationship between MDR1 mutation and ex vivo drug sensitivities of canine lymphomas

Biotechnology and Bioprocess Engineering
Learn More →

Recent advances in and applications of ex vivo drug sensitivity analysis for blood cancers

Blood Research
Learn More →

Prognostic Utility of the Flow Cytometry and Clonality Analysis Results for Feline Lymphomas

Veterinary Sciences
Learn More →

Multimodal machine learning models identify chemotherapy drugs with prospective clinical efficacy in dogs with relapsed B-cell lymphoma

Frontiers in Oncology
Learn More →

Prognostic value of European LeukemiaNet 2022 criteria and genomic clusters using machine learning in older adults with acute myeloid leukemia

Haematologica
Learn More →

Predicting Dynamic Clinical Outcomes of the Chemotherapy for Canine Lymphoma Patients Using a Machine Learning Model

Veterinary Sciences
Learn More →

Predicting likelihood of in vivo chemotherapy response in canine lymphoma using ex vivo drug sensitivity and immunophenotyping data in a machine learning model

Veterinary and Comparative Oncology
Learn More →